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Abstract—Long-read sequencing is emerging as a promising
sequencing technology because it can tackle the short length
limitation of second-generation sequencing, which has dominated
the sequencing market in past years. However, it has substantially
higher error rates compared to short-read sequencing (e.g., 13%
vs. 0.1%), and its sequencing cost per base is typically more
expensive than that of short-read sequencing. To address these
limitations, we present a distributed hybrid error correction
framework, called ParLECH, that is scalable and cost-efficient
for PacBio long reads. For correcting the errors in the long
reads, ParLECH utilizes the Illumina short reads that have the
low error rate with high coverage at low cost. To efficiently
analyze the high-throughput Illumina short reads, ParLECH
is equipped with Hadoop and a distributed NoSQL system.
To further improve the accuracy, ParLECH utilizes the k-mer
coverage information of the Illumina short reads. Specifically,
we develop a distributed version of the widest path algorithm,
which maximizes the minimum k-mer coverage in a path of the
de Bruijn graph constructed from the Illumina short reads. We
replace an error region in a long read with its corresponding
widest path. Our experimental results show that ParLECH can
handle large-scale real-world datasets in a scalable and accurate
manner. Using ParLECH, we can process a 312 GB human
genome PacBio dataset, with a 452 GB Illumina dataset, on 128
nodes in less than 29 hours.

I. INTRODUCTION

Since the start of the Human Genome Project, there have

been tremendous technological advancements in sequencing

technologies to understand the complexity and diversity of

genomes. Particularly, the continuous evolution of Next-

Generation Sequencing (NGS) technologies has drastically

reduced the cost of sequencing a whole genome in recent

years, and the sequence data are exploding in size and quantity.

The short-read sequencing platforms, often called second-

generation sequencing, have dominated the genome sequenc-

ing market in recent years by generating a huge number of

short reads at a significantly reduced cost and a high through-

put. Even though the short-read sequencing platforms are

being widely used and potentially good for understanding the

complex phenotypes, their critical limitation is that, because

of their short lengths of reads, they are insufficient to resolve

many long repetitive elements that are common in various

genomes (e.g., eukaryotic genomes) [1].

To address this major limitation, long-read sequencing

platforms, often called third-generation sequencing, aim to

generate substantially longer reads (in tens or hundreds of kilo-

bases) through direct sequencing of single DNA molecules.

The long-read sequencing platforms can be useful for various

research and clinical fields because they have great potential

to reveal repetitive or complex regions in a single read and

can support real-time sequencing using a portable device such

as the pocket-sized MinION sequencer of Oxford Nanopore

Technologies1. However, they have substantially higher error

rates compared to short-read sequencing (e.g., 13% vs. 0.1%),

and their sequencing cost per base is typically more expensive

than that of short-read sequencing.

To address these limitations, we present a distributed hybrid

error correction framework, called ParLECH, that is scalable

and cost-efficient for PacBio long reads. For correcting the

errors in the long reads, ParLECH utilizes the Illumina short

reads that have the low error rate with high coverage at low

cost. Through this hybrid error correction, we can reduce the

coverage requirement for long reads and thus their sequencing

cost. Specifically, ParLECH builds a de Bruijn graph (DBG)

from the Illumina short reads and uses the k-mer coverage

information of the short reads to correct the PacBio long reads.

Unlike other DBG-based long-read error correction tools such

as LoRDEC [2] and Jabba [3], we develop a distributed version

of the widest path algorithm, which maximizes the minimum

k-mer coverage between source and destination vertices in

the DBG, to improve the accuracy of our error correction.

For example, ParLECH correctly aligns 92% of the PacBio

base pairs while LoRDEC aligns 86% of them for an E. Coli

genome dataset.

We develop ParLECH using Hadoop MapReduce and a

distributed NoSQL system, called Hazelcast. By effectively

utilizing the big data frameworks, ParLECH can scale to large-

scale real-world human genome data on top of hundreds of

compute nodes. Our experimental results show that ParLECH

can correct a 312 GB human genome PacBio dataset, with a

DBG built from a 452 GB Illumina dataset (64x coverage), on

128 nodes in less than 29 hours. To the best of our knowledge,

1https://nanoporetech.com/products/minion
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ParLECH is the first hybrid error correction framework that

can handle long reads on that scale.

The rest of the paper is organized as follows. We discuss the

related work in Section II and describe our error correction ap-

proach in Section III. In Section IV, we present the distributed

architecture of ParLECH. Lastly, we show our experimental

results in Section V and conclude this paper in Section VI.

II. RELATED WORK

The second-generation sequencing platforms, such as Illu-

mina sequencers, generate short reads with low error rates

(e.g., 0.1%), and most of the errors are substitutions [1].

Since they can generate a huge number of short reads at

a significantly reduced cost and a high throughput, many

error correction tools without using any reference have been

developed based on a fact that the k-mers resulting from an

error base will have a significantly lower coverage compared to

the actual k-mers, such as Quake [4], Reptile [5], Hammer [6],

RACER [7], Coral [8], Lighter [9], Musket [10], Shrec [11],

DecGPU [12], Echo [13], and ParSECH [14]. In addition to the

error correction tools, there are many genome assembly tools

for large-scale short reads including MPI-based tools (e.g.,

SWAP [15]), Hadoop-based tools (e.g., GiGA [16]), extreme-

scale assemblers (e.g., HipMer [17], Lazer [18]), and GPU-

accelerated tools (e.g., LaSAGNA [19]).

The third-generation sequencing platforms, such as PacBio

and Oxford Nanopore sequencers, produce long reads with

high error rates (e.g., 13%), and indel (insertion/deletion)

errors are dominant in them. For example, indel errors are

about 15 times more common than substitution errors in

PacBio long reads [1]. Therefore, existing error correction

tools that are designed for substitution errors in short reads are

typically not adequate for long-read error correction. Another

challenge for long-read error correction is the high sequencing

cost per base for long reads so it would be prohibitive to

get long reads with high coverage that is essential for error

correction without reference genomes.

There are a few stand-alone error correction tools for

long reads without any complementary short reads such as

LorMA [20] and Canu [21]. Even though Canu can reduce the

coverage requirement by using the tf-idf weighting scheme for

long reads, the high sequencing cost for long reads can be a

major obstacle to utilizing such tools for large-scale genomes.

To address this limitation, several hybrid error correction tools

have been developed by utilizing the complementary low-cost

and high-quality Illumina short reads for correcting long reads.

LoRDEC [2] builds a DBG from Illumina short reads and cor-

rects the error regions in long reads through the local assembly

on the DBG. Jabba [3] also presents a DBG-based approach by

iteratively using different k-mer sizes to polish the unaligned

regions of the long reads. Some hybrid error correction tools,

such as PacBioToCA [22] and LSC [23], propose alignment-

based approaches in which the short reads are first mapped

to the long reads to create an overlap graph, and then the

long reads are corrected through a consensus-based algorithm.

ColorMap [24] utilizes the Dijkstra’s shortest path algorithm

by keeping the information of consensual dissimilarity on

each edge. Proovread [25] reaches the consensus through the

iterative alignment procedures by incrementally increasing the

sensitivity of the long reads.

In this paper, we present ParLECH that is equipped with

DBG-based error correction techniques. Unlike existing hybrid

tools, we develop ParLECH as a distributed framework, so

it can scale to large-scale real-world genomes. To improve

the error correction accuracy, we also propose the distributed

version of the widest path algorithm by utilizing the k-

mer coverage information of the short reads during the local

assembly.

III. ERROR CORRECTION METHODOLOGY

Fig. 1: Error Correction Steps in ParLECH

Figure 1 shows the overview of the ParLECH’s error

correction approach. Inspired by other hybrid error correction

tools, ParLECH also builds a DBG from the Illumina short

reads to correct the PacBio long reads. Specifically, ParLECH

constructs a DBG from the Illumina short reads with the

coverage information of each k-mer (Step 1). Next, ParLECH

partitions a PacBio long read into solid and weak regions

based on the k-mer coverage information in the DBG (Step

2). Lastly, ParLECH selects boundary k-mers as either source

or destination vertices in the DBG and finds the widest

path for each source-destination k-mer pair, which maximizes

the minimum coverage of the k-mers in the path. ParLECH

replaces the weak regions in the long read with the k-mers in

the widest paths (Step 3).

ParLECH chooses the widest paths for improving the accu-

racy based on our assumption that the probability of having

the k-mer with the minimum coverage is higher in a path

generated from a read with sequencing errors than a path

generated from a read without sequencing errors for the same

region in a genome, as discussed in [4]. For example, let R1

and R2 denote two short reads representing the same region in

a genome, and let us assume that R1 includes one error base

and R2 has no error base. Since ParLECH creates a DBG with

the coverage information of each k-mer, the DBG representing
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Fig. 2: Widest Path Example

R1 and R2 will have a fork structure leading to two different

paths as illustrated in Figure 2. Based on our assumption, the

probability of having the k-mer with the minimum coverage

will be higher in the path generated from R1 than the path

generated from R2. We describe each step in detail in the

following section.

IV. PARLECH’S DISTRIBUTED ARCHITECTURE

In this section, we present the distributed architecture of

ParLECH.

A. Background

Error correction for sequencing data is not only data- and

compute-intensive but also search-intensive because the size

of the k-mer spectrum increases almost exponentially with the

increasing value of k (i.e., up to 4k unique k-mers), and we

need to search in the huge search space. Since existing hybrid

error correction tools are not designed for large-scale genome

sequence data such as human genomes, we design ParLECH

as a scalable and distributed framework equipped with Hadoop

and Hazelcast. Hadoop was originally developed as the open-

source counterpart of Google’s MapReduce. Hadoop typically

reads the input data from the underlying Hadoop Distributed

File System (HDFS) in the form of data blocks. In the

MapReduce abstraction, a user-defined map function is applied

to each record in the input data to generate intermediate

key-value pairs. In this map phase, multiple map tasks are

independently running to benefit from parallel and distributed

computing. The intermediate key-value pairs are sorted and

grouped by unique keys and then sent to the reduce tasks.

Lastly, a user-defined reduce function is applied to the grouped

values for each unique key, and the final output data are

typically written to HDFS.

Hazelcast [26] is an open-source distributed in-memory

NoSQL database (or a key-value store). In a Hazelcast cluster,

data are evenly distributed among the nodes using the Mur-

murHash, allowing horizontal scaling both in terms of avail-

able storage space and processing power. Hazelcast provides

a hash table-like functionality, such as get and put, to insert

and retrieve records in O(1) time. Because of its operational

similarity with a hash table, we will use a distributed NoSQL

system or distributed hash table interchangeably to refer to

Hazelcast. Hazelcast creates multiple in-memory instances of

a hash table over multiple nodes and enables communication

and load balancing among all these instances. The O(1) search

time of Hazelcast makes the search process in ParLECH more

efficient and scalable.

B. Error Correction Pipeline

Fig. 3: Error Correction Pipeline in ParLECH

Figure 3 shows the error correction pipeline of ParLECH.

It consists of three phases: 1) constructing a de Bruijn graph,

2) locating errors in long reads, and 3) correcting the errors.

ParLECH uses HDFS to store the raw short and long reads as

the input for the pipeline and Hazelcast to store the constructed

de Bruijn graph in distributed memory. In the first phase,

ParLECH uses only Hadoop to construct a de Bruijn graph

from the Illumina short reads. In the subsequent phases,

ParLECH uses both Hadoop and Hazelcast to locate and

correct the errors in the PacBio long reads. Lastly, ParLECH

writes the corrected reads into HDFS. We describe each phase

in detail in the subsequent subsections.

C. Constructing a De Bruijn Graph

Fig. 4: De Bruijn Graph Construction

ParLECH constructs a de Bruijn graph from the Illumina

short reads using a Hadoop MapReduce job. In the map phase

of the job, ParLECH divides each read into several short
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fragments (i.e., k-mers) and generates each pair of adjacent

k-mers as a key-value pair in which the key (i.e., the first

k-mer) denotes a vertex in the graph, and the value (i.e., the

second k-mer) represents an outgoing edge from the key. In

addition, the value also contains an integer value 1 that will

be used to calculate the coverage of the key during the reduce

phase. During the shuffle phase, all edges and count values

from the same vertex (i.e., k-mer) will be collected at the

same reduce task. In the reduce phase, ParLECH aggregates all

edges and adds all count values for each k-mer as its coverage.

Lastly, ParLECH stores the final results (i.e., the constructed

de Bruijn graph) in a hash table using Hazelcast in which a

key denotes a k-mer, and its value stores the coverage and

outgoing edges of the k-mer. Figure 4 shows an example of

this graph construction phase when k is 3.

D. Locating errors in long reads

ParLECH locates error regions in long reads based on the

constructed de Bruijn graph using a Hadoop Map-only job.

Specifically, ParLECH scans each long read and generates its

k-mers using the same k value used in the previous phase. For

each k-mer in the long read, ParLECH searches its coverage

information included in the de Bruijn graph using Hazelcast. If

the coverage is greater than a predefined threshold, ParLECH

marks the k-mer as strong. Otherwise, ParLECH marks it as

weak. If two or more adjacent k-mers are marked as weak

(or strong), we denote them as a weak (or strong) region.

ParLECH corrects the weak regions as described in the next

subsection.

E. Correcting errors in long reads

Algorithm 1 Widest Path

1: procedure MODIFIEDDIJKSTRA(Graph, source, destination)

2: for (each vertex v in Graph) do

3: width[v] := -infinity ;

4: previous[v] := undefined ;

5: end for

6: width[source] := infinity ;

7: Q := the set of all nodes in Graph ;

8: while (Q is not empty AND destination is not reached) do

9: u := vertex in Q with largest width in width[] ;

10: remove u from Q ;

11: if (width[u] = -infinity) then

12: break ;

13: end if

14: for (each neighbor v of u) do

15: alt := max(width[v], min(width[u], width between(u, v))) ;

16: if alt > width[v]: then

17: width[v] := alt ;

18: previous[v] := u ;

19: end if

20: end for

21: end while

22: end procedure

Like the previous phase, ParLECH uses a Hadoop Map-

only job to correct weak regions in long reads based on the

constructed de Bruijn graph. Given a weak region is bounded

by a pair of strong k-mers, ParLECH uses the strong k-mer

pair as the source and destination vertices in the de Bruijn

graph for correcting the weak region, like the LoRDEC’s error

correction. Any path between the two vertices denotes a se-

quence that can be assembled from the short reads. To choose

a more accurate path (i.e., sequence), ParLECH implements

a widest path algorithm that maximizes the minimum k-mer

coverage of a path in the de Bruijn graph. This is based on

our assumption that the probability of having the k-mer with

the minimum coverage is higher in a path generated from a

read with sequencing errors than a path generated from a read

without sequencing errors for the same region in a genome, as

explained above. In other words, even if there are some error

k-mers with high coverage in a path, it is highly likely that

the path includes some k-mer with low coverage that will be

an obstacle to being selected as the widest path, as illustrated

in Figure 2. Therefore, ParLECH is equipped with the widest

path technique to find a more accurate sequence to correct the

weak region in the long read.

Algorithm 1 shows our widest path algorithm implemented

in ParLECH, a slight modification of the Dijkstra’s shortest

path algorithm using a priority queue that leads to the time

complexity of O(E log V ). Instead of computing the shortest

paths, ParLECH traverses the graph and updates the width of

each path from the source vertex as the minimum width of

any edge on the path (line 15).

To efficiently compute the widest paths for large-scale data,

ParLECH uses a Hadoop Map-only job in which each map task

handles a set of weak regions and computes the widest path

between source and destination vertices for each weak region.

Since the constructed de Bruijn graph is stored in a distributed

hash table using Hazelcast, multiple map tasks are running

in parallel to compute the widest paths. ParLECH replaces a

weak region in a long read with the sequence corresponding

to the widest path found in the de Bruijn graph.

F. Correcting errors on the edges of long reads

If a weak region is in the end of a PacBio read, ParLECH

finds a strong boundary k-mer in the de Bruijn graph as the

start vertex. However, ParLECH cannot find the strong k-mer

on the other side of the weak region because the region is

on the edge of the long read. To mitigate this problem, if the

strong k-mer is the part of a chain structure of vertices (i.e.,

a path where each vertex has exactly one incoming edge and

one outgoing edge), ParLECH traverses the entire chain after

the strong k-mer until ParLECH detects a fork structure in the

de Bruijn graph and then replaces the weak region with the

traversed path. Similarly, if a weak region is in the beginning

of a PacBio read, ParLECH finds a strong boundary k-mer in

the de Bruijn graph as the destination vertex. Next, ParLECH

traverses the chain structure, if any, before the strong k-mer

and replaces the weak region with the traversed path. If the

strong k-mer is not the part of a chain structure of vertices,

ParLECH discards the weak region in the PacBio long reads.

V. EVALUATION

In this section, we show the experimental results of Par-

LECH using various real-world sequence datasets.
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TABLE I: Datasets

Data
Accn. # #Reads Data size (GB) Read length #Reads aligned

PacBio Illumina PacBio Illumina PacBio Illumina PacBio (Avg) Illumina PacBio Illumina

E. coli DevNet ERR022075 282394 45440200 1.032 13.50 1120 101 78.97 99.44

Yeast DevNet SRR567755 2315594 4503422 0.53 1.20 5874 101 82.12 93.75

Fruit fly BergmanLab ERX645969 6701498 179363706 55 59 4328 101 51.14 95.56

Human DevNet SRX016231 23897260 1420689270 312 452 6587 101 72.3 79.60

TABLE II: Effects of Different Traversal Algorithms

Data Methodology #Reads #Bases #Aligned Reads #Aligned bases %Aligned reads %Aligned bases

E. coli
ParLECHWP 282394 309367145 264574 285070391 93.69 92.15
ParLECHSP 282394 307987923 247227 266373078 87.55 86.49
ParLECHGreedy 282394 328966341 216543 233312807 76.68 70.92

Yeast
ParLECHWP 231594 1389446261 199332 1240945939 86.07 89.31
ParLECHSP 231594 1355153783 196669 1171490123 84.92 86.44
ParLECHGreedy 231594 1399628927 175478 1045262567 75.77 74.68

Fruit fly
ParLECHWP 6701498 30117416348 4417627 18799138439 65.92 62.42
ParLECHSP 6701498 30193752318 3654326 14919815143 54.53 49.41
ParLECHGreedy 6701498 32131749687 2946734 12030871508 43.97 37.44

TABLE III: Accuracy Comparison (Alignments)

Data Methodology #Reads #Bases #Aligned Reads #Aligned bases %Aligned reads %Aligned bases

E. coli
Original 282394 316367409 223017 237497013 78.97 75.07
LoRDEC 282394 307987923 247227 266373078 87.55 86.49
ParLECH 282394 309367145 264574 285070391 93.69 92.15

Yeast
Original 231594 1360457697 190184 1206524663 82.12 88.69
LoRDEC 231594 1345253694 196669 1171490123 84.92 87.08
ParLECH 231594 1389446261 199332 1240945939 86.07 89.31

Fruit fly
Original 6701498 29007475325 3427146 13355041639 51.14 46.04
LoRDEC 6701498 30025673204 3654326 14919815143 54.53 49.69
ParLECH 6701498 30117416348 4417627 18799138439 65.92 62.42

TABLE IV: Experimental Environment

Maximum #nodes 128

Processor Intel IvyBridge Xeon

#cores per node 20

DRAM per node 64 GB

Disk per node 250 GB hard disk drive

Network 56 Gbps InfiniBand

A. Datasets

To evaluate ParLECH, we use four real-world datasets as

shown in Table I. The first three datasets (E. coli, Yeast, and

Fruit fly) are relatively small, and we use them to compare the

accuracy of ParLECH with that of LoRDEC. We also use the

Fruit fly dataset to analyze the various performance metrics in

terms of scalability and execution times. We use the largest

dataset (Human genome) to showcase the large-scale data

handling capability of ParLECH for sequence data with several

hundred GBs in size using more than 100 compute nodes. In

our experiments, other existing tools could not produce the

result for the dataset. We use 3 as the threshold for locating

weak k-mers for all datasets.

B. Computing Environment

To evaluate ParLECH, we use SuperMic2 HPC cluster, and

Table IV summarizes its configuration. The maximum number

of compute nodes we can use for a single job is 128. Each

2http://www.hpc.lsu.edu/resources/hpc/system.php?system=SuperMIC

node has 20 cores, 64 GB main memory, and one 250 GB

hard disk drive (HDD). Note that the main bottleneck for

our Hadoop jobs running on top of disk-based HDFS is the

I/O throughput because each node is equipped with only

one HDD. We expect that the performance of ParLECH can

be significantly improved by using multiple HDDs per node

and/or SSD. Our previous work [16], [27], [28] demonstrates

the effects of various computing environments for large-scale

data processing.

C. Accuracy Metrics

To evaluate the accuracy of ParLECH, we use several

accuracy metrics as follows. %Aligned reads and %Aligned

bases indicate how well the corrected long reads and their

bases are aligned to the reference genome respectively. The

percentage of bases successfully aligned to the reference

genome (%Aligned bases) denotes the ratio of the total number

of successfully aligned bases to the total number of bases in the

reference genome. To measure both the accuracy metrics for

the E. Coli, Yeast, and Fruit fly datasets, we use BLASR [29]

as it bridges the long indel errors better and thus reports longer

alignments. For the Human genome dataset, we use BWA-

mem [30] to get the alignment results quickly. We also use the

gain metric [5] to measure the fraction of effectively corrected

errors by ParLECH. The gain is defined as

Gain =
TP − FP

TP + FN
(1)
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TABLE V: Accuracy Comparison (Gain)

TP FP FN %Gain

E. coli
LoRDEC 31264830 330659 4230385 87.15
ParLECH 33229635 355464 3275190 90.05

Yeast
LoRDEC 322660270 8989628 62594234 81.42
ParLECH 355708411 20037769 51642375 82.40

Fruit fly
LoRDEC 732799376 34190591 84891209 85.43

ParLECH 785735162 37126377 97826995 84.73

where TP (true-positive) is the number of error bases that are

successfully corrected, FP (false-positive) is the number of

true bases that are wrongly changed, and FN (false-negative)

is the number of error bases that are falsely detected as correct.

D. Effects of Different Traversal Algorithms

We first compare the accuracy of our widest path algo-

rithm (ParLECHWP or ParLECH) with that of two base-

line graph traversal algorithms, the Dijkstra’s shortest path

algorithm (ParLECHSP ) and a greedy traversal algorithm

(ParLECHGreedy), as shown in Table II. The Dijkstra’s short-

est path algorithm (ParLECHSP ) finds the path with the

shortest distance between two strong boundary k-mers in the

de Bruijn graph and replaces the weak region in the long read

with the sequence corresponding to the shortest path. Even

though the time complexity of this algorithm is similar to

that of our widest path algorithm, it cannot take advantage

of the k-mer coverage information included in the de Bruijn

graph because it uses the same weight for all edges. On the

other hand, the greedy traversal algorithm (ParLECHGreedy)

takes advantage of the k-mer coverage information included in

the de Bruijn graph. As a variation of the depth first search,

it traverses the de Bruijn graph from the source vertex and

selects the next vertex with the maximum coverage among

all neighboring vertices. However, the traversal can often

end up in a tip of dead-end paths, resulting in expensive

operations such as backtracking. To mitigate this problem,

we use a branching factor b (100 by default) such that, after

traversing b successive vertices from the source vertex, the

algorithm backtracks if it cannot meet the destination vertex.

The algorithm aborts when all successors from the source

vertex are visited using this branching factor. We observe that

ParLECHWP produces more accurate results than the other

baseline algorithms for all datasets.

E. Comparison with LoRDEC

Tables III and V compare the accuracy of ParLECH with

that of LoRDEC in terms of the percentage of aligned bases

and gain respectively. We measure the accuracy metrics using

BLASR by running multiple instances of BLASR in parallel

for efficiently processing large datasets. The results demon-

strate that ParLECH can generate significantly more accurate

outputs for all datasets in terms of both the aligned bases and

gain. Like LoRDEC, ParLECH does not try to correct the long

reads in which there is no strong k-mer. However, ParLECH

searches strong k-mers in all reads regardless of their length

while LoRDEC filters out reads whose length is less than a

threshold.

F. Scalability
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Fig. 5: Scalability in ParLECH

Figure 5 demonstrates the scalability of ParLECH. On a

single node for the E. Coli dataset, LoRDEC is about 16%

faster than ParLECH because of the distributed computing

overhead of ParLECH, as shown in Figure 5a. However, since

ParLECH is developed using scalable and efficient Hadoop and

Hazelcast, we can easily distribute ParLECH on a cluster with

multiple compute nodes, and the performance of ParLECH

improves as we add more compute nodes. On the other

hand, the LoRDEC’s error correction techniques including the
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memory- and compute-expensive de Bruijn graph construction

process are not designed for distributed computing on multiple

compute nodes. Even though the error correction process

of LoRDEC can work on each long read independently, it

does not support scheduling for such distributed computing

on multiple nodes, so the scheduling should be manually

implemented by users.

Figure 5b demonstrates the scalability of each phase in

ParLECH for the Fruit fly dataset. The results show that the

processing time of all three phases (i.e., constructing a de

Bruijn graph, locating errors in long reads, and correcting er-

rors in long reads) improves almost linearly with the increasing

number of compute nodes. Therefore, the overall execution

time of ParLECH also shows the almost linear scalability as

we add more compute nodes.

G. Processing the large-scale human genome

TABLE VI: Correcting a Human Genome

PacBio data size 312GB

Illumina data size 452GB

#nodes used 128

Time 28.6 hours

%Aligned reads 78.3

%Aligned bases 75.43

%Gain 82.38

To showcase the large-scale data handling capability of

ParLECH for sequence data with several hundred GBs in size,

we report the experimental results of ParLECH for processing

the Human genome dataset. This 312 GB dataset includes

more than 23 million PacBio long reads with the average

length of 6,587 base pairs. Its corresponding 452 GB Illumina

dataset has more than 1.4 billion reads with the read length

of 101 base pairs. The entire error correction process takes

about 28.6 hours using 128 compute nodes, as summarized

in Table VI. ParLECH correctly aligns 78.3% of reads and

75.4% of bases to the reference genome.

VI. CONCLUSION

In this paper, we have presented a distributed hybrid error

correction framework, called ParLECH, that is scalable and

cost-efficient for PacBio long reads. For correcting the errors

in the long reads, ParLECH utilizes the Illumina short reads

that have the low error rate with high coverage at low cost. To

efficiently analyze the high-throughput Illumina short reads for

correcting the long reads, ParLECH is equipped with Hadoop

and Hazelcast. To improve the accuracy, based on the k-

mer coverage information in the short reads, we develop the

widest path algorithm, which maximizes the minimum k-mer

coverage in a path of the de Bruijn graph constructed from

the Illumina short reads. We replace the weak regions in a

long with their corresponding widest path. Our experimental

results show that ParLECH can handle large-scale real-world

datasets in a scalable and accurate manner. Using ParLECH,

we can process a 312 GB human genome PacBio dataset, with

a 452 GB Illumina dataset, on 128 nodes in less than 29 hours.

To the best of our knowledge, ParLECH is the first hybrid

error correction framework that can handle long reads on that

scale. As our future work, we plan to extend ParLECH for

other large-scale genome analysis tasks such as hybrid genome

assembly.
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